Synthesis, characterization and biological activity of some isoxazole derivatives via 1,3-dipolar cycloaddition reaction of nitrile oxide
Synthesis and Anti-microbial activity of Isoxazole derivates via Nitrile Oxide, 1,3-Dipolar Cycloaddition Reaction
DOI:
https://doi.org/10.15218/zjms.2025.015Keywords:
Antibacterial, Antioxidant, 1,3-Dipolar Cycloaddition, Insilico, Isoxazole derivativesAbstract
Background and objective: Isoxazoles are significant heterocyclic products that are used in various applications in the field of medicinal chemistry. Along with prescription drugs, a variety of bioactive pharmaceutical substances, such as valdecoxib, leflunomide, and danazol, include the isoxazole core. The present work aimed to synthesize and test the antibacterial, antioxidant, and antifungal activities combined with the theoretical investigations.
Methods: Various 2,4-disubstituted isoxazoles have been synthesized through a 1,3-dipolar cycloaddition reaction via nitrile oxide. The structures of synthesized compounds were fully characterised by multinuclear NMR spectroscopy. Anti-bacterial activity was investigated against Escherichia coli and Staphylococcus aureus by Muller Hinton agar using agar diffusion method. The biological effect of the synthesized compounds was investigated with the docking study.
Results: Herein, nine new target compounds were synthesized in moderate to high isolated yield. Naphthalene and chlorophenyl isoxazole substitutes have been found to enclose a higher effectiveness against bacterial, fungus and radical scavenging abilities based on the docking binding site energy.Compounds5a-e exhibited various antibacterial activities against Escherichia coli as gram-negative bacteria ranging from 21 to 40 mm of the inhibitory zone (30 µg). The compound 5eexhibiteda significant antioxidant activity using the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) (97.8 %). A range of docking energy scores between -9.4 and -13.7Kcal/mol were observed for the compounds5a-g and 9a-c.
Conclusion: The newly synthesized 2,4-disubstituted isoxazole compounds could serve as potent leads for the development of antimicrobial agents.
Metrics
References
Zhu J, Mo J, Lin HZ, Chen Y, Sun HP. The recent progress of isoxazole in medicinal chemistry. Bioorg Med Chem. 2018; 26(12):3065-75. DOI:10.1016/j.bmc.2018.05.013.
Ahmed SM, Hussain FHS, Quadrelli P. 9-Anthraldehyde oxime: a synthetic tool for variable applications. Monatsh fur Chem. 2020; 151:1643-58. DOI:10.1007/s00706-020-02695-2.
Rammah MM, Gati W, Mtiraoui H, Rammah MEB, Ciamala K, Knorr M, et al. Synthesis of Isoxazole and 1, 2, 3-Triazole Isoindole Derivatives via Silver-and Copper-Catalyzed 1, 3-Dipolar Cycloaddition Reactions. Molecules. 2016; 21(3):307. DOI:10.3390/molecules21030307.
Zhang H-K, Eaton JB, Fedolak A, Gunosewoyo H, Onajole OK, Brunner D, et al. Synthesis and biological evaluation of novel hybrids of highly potent and selective α4β2-Nicotinic acetylcholine receptor (nAChR) partial agonists. Eur J Med Chem. 2016; 124:689-97. DOI:10.1016/j.ejmech.2016.09.016.
Sowmya D, Teja GL, Padmaja A, Prasad VK, Padmavathi V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1, 3-dipolar cycloaddition methodology and their antimicrobial activity. Eur J Med Chem. 2018; 143:891-8. DOI: 10.1016/j.ejmech.2017.11.093.
Khodabandlou S, Saraei M. Synthesis of novel isoxazole derivatives bearing kojic acid moiety and evaluation of their antimicrobial activity. Chem Heterocycl Compd. 2021; 57:823-7. DOI:10.1007/s10593-021-02986-4
Mączyński M, Borska S, Mieszała K, Kocięba M, Zaczyńska E, Kochanowska I, et al. Synthesis, Immunosuppressive Properties, and Mechanism of Action of a New Isoxazole Derivative. Molecules. 2018; 23(7):1545. DOI:10.3390/molecules23071545.
Aksenov AV, Aksenov DA, Arutiunov NA, Aksenov NA, Aleksandrova EV, Zhao Z, et al. Synthesis of Spiro[indole-3,5'-isoxazoles] with Anticancer Activity via a Formal [4 + 1]-Spirocyclization of Nitroalkenes to Indoles. J Org Chem. 2019; 84(11):7123-37. DOI:10.1021/acs.joc.9b00808.
Bibi H, Nadeem H, Abbas M, Arif M. Synthesis and anti-nociceptive potential of isoxazole carboxamide derivatives. BMC Chem. 2019; 13(1):6. DOI:10.1186/s13065-019-0518-6.
Abdelall EKA. Synthesis and biological evaluations of novel isoxazoles and furoxan derivative as anti-inflammatory agents. Bioorg Chem. 2020; 94:103441. DOI:10.1016/j.bioorg.2019.103441.
Ahmed SM, Hussain FH, Leusciatti M, Mannucci B, Mella M, Quadrelli P. Phosphorylation of 10-bromoanthracen-9-yl-cyclopenta [d] isoxazol-6-ols: chemistry suitable for antivirals. ARKIVOC. 2022; 2022. DOI:10.24820/ark.55501 90.p011.784
Moiola M, Bova A, Crespi S, Memeo MG, Mella M, Overkleeft HS, et al. Fluorescent Probes from Aromatic Polycyclic Nitrile Oxides: Isoxazoles versus Dihydro‐1λ3, 3, 2λ4‐Oxazaborinines. Chemistry Open. 2019; 8(6):770-80. DOI:10.1002/open.20 1900137.
Begum S, Begum T, Rahman N, Khan RA. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biol Pharm Sci. 2021; 14(2):087-97. DOI: 10.30574/gscbps.2021.14.2.0037.
Prakash B. Functional and preservative properties of phytochemicals: Academic Press; 2020.
Alós J-I. Resistencia bacteriana a los antibióticos: una crisis global. Enferm Infecc Microbiol Clin. 2015; 33(10):692-9. DOI: 10.1016/j.eimc.2014.10.004.
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, et al. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today. 2021; 26(2):551-60. DOI: 10.1016/j.drudis.2020.11.004.
Ahmed SM, Salih KM, Ahmad HO, Jawhar ZH, Hamad DH. Synthesis, spectroscopic characterization and antibacterial activity of new series of Schiff base derived from 4-aminoantipyrine and 2-amino benzimidazole. Zanco J Med Sci. 2019; 23(2):206-16. DOI: 10.15218/zjms.2019.026
Minuti LF, Memeo MG, Crespi S, Quadrelli P. Fluorescent Probes from Stable Aromatic Nitrile Oxides. Eur J Org Chem. 2016; 2016(4):821-9. DOI:10.1002/ejoc.201501478.
Memeo MG, Distante F, Quadrelli P. (2S)-[3-(Anthracen-9-yl)-4, 5-dihydroisoxazol-5-yl] methyl 2-[(tert-butoxycarbonyl) amino] propanoate. Molbank. 2014; 2014(4):M837. DOI: 10.3390/M837
Castillo JC, Orrego‐Hernández J, Portilla J. Cs2CO3‐Promoted Direct N‐Alkylation: Highly Chemoselective Synthesis of N‐Alkylated Benzylamines and Anilines. Eur J Org Chem. 2016; 2016(22):3824-35. DOI:10.1002/ejoc.201600549
Salih KM, Ameen D, Hamad AN, Ganjo AR, Muhammed S. Synthesis and pharmacological profile of some new 2-substituted-2, 3-dihydro-1H-perimidine. Zanco J Med Sci. 2020; 24(1):68-79. DOI: 10.15218/zjms.2020.010
GAUTAM KC, SINGH DP. Synthesis and antimicrobial activity of some isoxazole derivatives of thiophene. Chem Sci Trans. 2013; 2(3):992-6. DOI:10.7598/cst2013.478
Garcia EJ, Oldoni TLC, Alencar SMd, Reis A, Loguercio AD, Grande RHM. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent J. 2012; 23:22-7. DOI: 10.1590/S0103-64402012000100004.
Pandey SK, Yadava U, Sharma M, Upadhyay A, Gupt MP, Dwivedi AR, et al. Synthesis, molecular structure investigation, biological evaluation and docking studies of novel spirothiazolidinones. Results Chemistry. 2023; 5:100726. DOI: 10.1016/j.rechem. 2022.100726
Obaid RJ. New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation. Arab J Chem. 2023; 16(2):104505. DOI: 10.1016/j.arabjc.2022.104505
Ashraf SA, Elkhalifa AEO, Mehmood K, Adnan M, Khan MA, Eltoum NE, et al. Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of okra-derived ligand abscisic acid targeting signaling proteins involved in the development of diabetes. Molecules. 2021; 26(19):5957. DOI: 10.3390/molecules26195957.
Abbott AP, Ahmed EI, Prasad K, Qader IB, Ryder KS. Liquid pharmaceuticals formulation by eutectic formation. Fluid Ph Equilib. 2017; 448:2-8. DOI: 10.1016/j.fluid.2017.05.009.
Qader IB, Laguerre M, Lavaud A, Tenon M, Prasad K, Abbott AP. Selective Extraction of Antioxidants by Formation of a Deep Eutectic Mixture through Mechanical Mixing. ACS Sustain Chem Eng. 2023; 11(10):4168-76. DOI: 10.1021/acssuschemeng.2c06894.
Santos AF, Argolo AC, Paiva PM, Coelho LC. Antioxidant activity of Moringa oleifera tissue extracts. Phytother Res. 2012; 26(9):1366-70. DOI: 10.1002/ptr.4591
Zheng L, Lin L, Su G, Zhao Q, Zhao M. Pitfalls of using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides. Food Res Int. 2015; 76:359-65. DOI: 10.1016/j.foodres.2015.06.045
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sarbast M. Ahmed, Hayman Abdulrahman, Faiq H. S. Hussain, Hiwa Omer Ahmad, Idrees B. Qader, Hemn A. Qader (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright on any article published in Zanco J Med Sci is retained by the author(s) in agreement with the Creative Commons Attribution Non-Commercial ShareAlike License (CC BY-NC-SA 4.0).