Inhibitory effect of various recombinant corn trypsin inhibitor variants against trypsin

Authors

  • Badraldin Kareem Hamad Department of Pharmacology, College of Pharmacy, Hawler Medical University, Erbil, Iraq.

DOI:

https://doi.org/10.15218/zjms.2025.009

Keywords:

CTI, Mutation, Inhibition, Trypsin, Ovarian cancer, COVID-19

Abstract

Background and objective: Trypsin is best known for playing a role in enteric digestion, among the most commonly examined serine proteases. Trypsin is expressed extra-pancreatically by a number of cancer types (for instance, Ovarian cancer), and it is thought that both in vivo and in vitro carcinogenesis are facilitated by trypsin. A new study suggests that trypsin overexpression may promote Coronavirus transmission. In this investigation, several corn trypsin inhibitor (CTI) variants will be expressed and purified, and their trypsin inhibitory action will be assessed.

Methods: CTI was cloned and expressed, and then different variants of rCTI were expressed and assessed for their ability to inhibit trypsin enzyme activity. 

Results: The Arg34Ala amino acid substitution negated all inhibitory activity, whereas Gly32Trp, Trp22Ala reduced inhibitory activity by considerable degrees, respectively six-fold and seven-fold; Arg27Ala, Glu39Ala, Arg42Ala, Arg27Ala-Arg42Ala didn't affect inhibitory activity either.

Conclusion: CTI's central inhibition loop is critical for binding trypsin, and the data confirm that Arg34, Trp22, and Gly32 of the loop are involved. It is possible to design new, specific, and safe drug candidates based on the residues for the treatment of ovarian cancer using this framework. This study can also serve as a starting point for designing drugs that reduce the symptoms of COVID-19 caused by trypsin-induced cytokinestorm.

Metrics

Metrics Loading ...

References

Navarro-Guillen C, Yufera M, Perera E. Biochemical features and modulation of digestive enzymes by environmental temperature in the greater amberjack, Seriola dumerili. Front Mar Sci. 2022; 1391. doi: 10.3389/fmars.2022.960746.

Patel S. A critical review on serine protease: key immune manipulator and pathology mediator. Allergol Immunopathol (Madr.). 2017; 45(6):579-91. doi: 10.1016/j.aller.2016.10.011.

Forrest CM, McNair K, Vincenten MC, Darlington LG, Stone TW. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer. 2016; 16(1):1-19. doi: 10.1186/s12885-016-2795.

Rashid MY, Noor A, Patel V, Henin S, Cuello-Ramírez A, Gnawali A, et al. Role of SCO-792, a novel enteropeptidase inhibitor, in the prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis. Cureus. 2021; 13(3):1324. doi: 10.7759/cureus.

Malthouse JPG. Kinetic Studies of the Effect of pH on the Trypsin-Catalyzed Hydrolysis of N-α-benzyloxycarbonyl-l-lysine-p-nitroanilide: Mechanism of Trypsin Catalysis. ACS omega. 2020; 5(10):4915-23. doi: 10.1021/acsomega.9b03750.

Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis. Cancer Metastasis Rev. 2015; 34:775-96. doi: 10.1007/s10555-015-9599-4.

Martin CE, List K. Cell surface–anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev. 2019; 38:357-87. doi: 10.1007/s10555-019-09811-7.

Dong Y, Loessner D, Irving-Rodgers H, Obermair A, Nicklin JL, Clements JA. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin. Exp. Metastasis. 2014; 31:135-47. doi: 10.1007/s10585-013-9615-4.

Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie. 2019; 166:52-76. doi: 10.1021/acs.jproteome.7b00541.

Kim KK, Turner R, Khazan N, Kodza A, Jones A, Singh RK et al. Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS One. 2020; 15(5):e0232253. doi: 10.1371/journal.pone.0232253.

O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci. 2022; 23(17):9981. doi: 10.3390/ijms23179981.

Peregrina-Sandoval J, del Toro-Arreola S, Oceguera-Villanueva A, Cerda-Camacho F, del Toro-Arreola A, Gonzalez-Ramella O, et al. Trypsin proteolytic activity in cervical cancer and precursor lesions. Int J Clin Exp Pathol. 2017; 10(5):5587-93. www.ijcep.com/ISSN:1936-2625/IJCEP0051629.

Kenny HA, Leonhardt P, Ladanyi A, Yamada SD, Montag A, Im HK, et al. Targeting the Urokinase Plasminogen Activator Receptor Inhibits Ovarian Cancer MetastasisTargeting of u-PAR Inhibits Ovarian Cancer Invasion and Metastasis. Clin. Cancer Res. 2011; 17(3):459-71. doi: 10.1158/1078-0432.CCR-10-2258.

Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018; 8:24. https://doi.org/10.3389/fonc.2018.00024. PMID:29484286; PMCID:PMC5816037.

Zhang Y, Kenny HA, Swindell EP, Mitra AK, Hankins PL, Ahn RW, et al. Urokinase Plasminogen Activator System–Targeted Delivery of Nanobins as a Novel Ovarian Cancer Therapy uPA-Targeted Nanobin Therapy in Ovarian Cancer. Mol. Cancer Ther. 2013; 12(12):2628-39. doi: 10.1158/1535-7163.MCT-13-0204.

Elste AP, Petersen I. Expression of proteinase-activated receptor 1-4 (PAR 1-4) in human cancer. J Mol Histol. 2010; 41:89-99. doi: 110.1007/s10735-010-9274-6.

Gratio V, Beaufort N, Seiz L, Maier J, Virca GD, Debela M, et al. Kallikrein-related peptidase 4: a new activator of the aberrantly expressed protease-activated receptor 1 in colon cancer cells. Am J Pathol. 2010; 176(3):1452-61. doi: 10.2353/ajpath.2010.090523.

Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett. 2011; 2(4):599-608. doi: 10.3892/ol.2011.291.

Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-activated receptors in the intestine: focus on inflammation and cancer. Front Endocrinol (Lausanne). 2019; 10:717. doi: 10.3389/fendo.2019.00717.

Falconer AM, Chan CM, Gray J, Nagashima I, Holland RA, Shimizu H, et al. Collagenolytic matrix metalloproteinases antagonize proteinase-activated receptor-2 activation, providing insights into extracellular matrix turnover. J Biol Chem. 2019; 294(26):10266-77. doi: 10.1074/jbc.RA119.006974.

Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP. Novel agonists and antagonists for human protease activated receptor 2. J MedChem. 2010; 53(20):7428-40. doi: 10.1021/jm100984y. PMID: 20873792.

Chanakira A, Westmark PR, Ong IM, Sheehan JP. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol Oncol. 2017; 145(1):167-75. doi: 10.1016/j.ygyno.2017.01.022.

Chen H, Huang S, Chen Q, Liu Q, Lv X. Trypsin may induce cytokine storm in M1 macrophages, resulting in critical coronavirus disease. Respir Physiol Neurobiol. 2022; 303:103920. doi: 10.1016/j.resp.2022.103920.

Touw CE, de Jong Y, van Hylckama Vlieg A. The influence of corn trypsin inhibitor on the contribution of coagulation determinants to the Technoclone Thrombin Generation Assay (TGA) and the Calibrated Automated Thrombogram (CAT). PLoS One. 2022; 17(2):e0263960. doi: 10.1371/journal.pone.0263960. PMID: 35213588; PMCID: PMC8880747.

Parunov L, Surov S, Tucker E, Ovanesov M. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood: comment. J Thromb Haemost. 2015; 13(8):1527-30. doi: 10.1111/jth.12707. Epub 2014 Sep 30. PMID: 25142753.

Alibeik S, Zhu S, Yau JW, Weitz JI, Brash JL. Modification of polyurethane with polyethylene glycol–corn trypsin inhibitor for inhibition of factor Xlla in blood contact. J Biomater Sci Polym Ed. 2012; 23(15):1981-93. doi: 10.1163/092050611X603250.

Hellum M, Franco-Lie I, Øvstebø R, Hauge T, Henriksson CE. The effect of corn trypsin inhibitor, anti-tissue factor pathway inhibitor antibodies and phospholipids on microvesicle-associated thrombin generation in patients with pancreatic cancer and healthy controls. PLoS One. 2017; 12(9):e0184579. doi: 10.1371/journal.pone.0184579. PMID: 28910348; PMCID:PMC5598995.

Mohammed B, Martin E, Salinas V, Carmona R, Young G, Brophy D. Failure of corn trypsin inhibitor to affect the thrombin generation assay in plasma from severe hemophiliacs. J Thromb Haemost. 2014; 12(9):1558-61. doi: 10.1111/jth.12659.

Hansson K, Nielsen S, Elg M, Deinum J. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood. J Thromb Haemost. 2014; 12(10):1678-86. doi: 10.1111/jth.12707.

Butenas S, Mann K. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood: comment’. J Thromb Haemost. 2015; 13(3):487. doi: 10..1111/jth.12812.

Alharbi A, Iyer N, Al Qaryoute A, Raman R, Burks DJ, Azad RK, et al. Role of ribosomal RNA released from red cells in blood coagulation in zebrafish and humans. Blood Advances. 2021; 5(22):4634-47. doi: 10.1182/bloodadvances.2020003325.

Baeriswyl V, Calzavarini S, Chen S, Zorzi A, Bologna L, Angelillo-Scherrer A, et al. A synthetic factor XIIa inhibitor blocks selectively intrinsic coagulation initiation. ACS Chem Biol. 2015; 10(8):1861-70. doi: 10./.1021/acschembio.5b00103.

Meng D, Andre P, Bateman TJ, Berger R, Chen Y-H, Desai K, et al. Development of a novel tricyclic class of potent and selective FIXa inhibitors. Bioorg Med Chem Lett. 2015; 25(22):5437-43. doi: 10.1016/j.bmcl.2015.07.078.

Hamad BK, Pathak M, Manna R, Fischer PM, Emsley J, Dekker LV. Assessment of the protein interaction between coagulation factor XII and corn trypsin inhibitor by molecular docking and biochemical validation. J Thromb Haemost. 2017; 15(9):1818-28. doi: 10.1111/jth.13773.

Liu T, Zhao H, Jian S, Gong S, Li S, Ma Y, et al. Functional expression, purification and identification of interaction partners of PACRG. Molecules. 2021; 26(8):2308. doi: 10.3390/molecules26082308. PMID: 33923444; PMCID: PMC8074078.

Downloads

Published

2025-04-23

How to Cite

Kareem Hamad, B. (2025). Inhibitory effect of various recombinant corn trypsin inhibitor variants against trypsin . Zanco Journal of Medical Sciences (Zanco J Med Sci), 29(1), 80–91. https://doi.org/10.15218/zjms.2025.009

Issue

Section

Original Articles