Toxicity of antiviral Remdesivir on human liver’s ATP binding cassette subfamily D member 3 transporters

Authors

  • Sarwin Yaba Saber Department of Biology, College of Science, Salahaddin University, Erbil, Iraq.
  • Hedy A. Hassan Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Iraq.

DOI:

https://doi.org/10.15218/zjms.2024.24

Keywords:

Remdesivir, Covid-19, Hepatotoxicity, Cell transporters, Expression

Abstract

Background and objective: The World Health Organization advises against the use of the antiviral drug Remdesivir to treat severe COVID-19 infections due to potential toxicity. The molecular mechanism of this toxicity is not well established. ATP-binding cassette (ABC) transporters play an essential role in the transport of various drugs in many illnesses.

Objective: This study examines the possible role of ATP-binding cassette, subfamily D, member 3 (ABCD3) in Remdesivir toxicity.

Methods: Real-time PCR and MTT assays were used to demonstrate the toxicity of Remdesivir on ABCD3 gene expression in the HepG2 cell line. Enzyme-linked immunosorbent assay was used to detect serum ABCD3 levels, Prestige24i was used to detect C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) in the serum. Nano-Checker710 was used to detect D-dimer in the serum of the patients.

Results: Remdesivir exhibits dose-dependent toxicity to the HepG2 cell line. The drug toxicity is significantly increased at three doses of 5, 10, and 20 µg/ml in virus-free hepatic cell lines. It suppressed ABCD3 gene expression in both the HepG2 cell line and COVID-19 patients’ sera. COVID-19 virus increases serum levels of CRP, ALT, AST and D-dimer. The drug lowers serum CRP, transiently lowers D-dimer, and increases ALT and AST levels.

Conclusion: Remdesivir suppressed ABCD3 gene expression and increased levels of inflammatory markers. Remdesivir contributes to hepatocyte damage independently of the COVID-19 virus.

Metrics

Metrics Loading ...

References

Boban M. Novel coronavirus disease (COVID-19) update on epidemiology, pathogenicity, clinical course and treatments. Int J Clin Pract 2021; 75:e13868. doi:10.1111/ijcp.13868.

Mulangu S, Dodd LE, Davey RT, TshianiMbaya O, Proschan M, Mukadi D, et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med 2019; 381(24):2293–303. doi: 10.1056/NEJMoa1910993.

Kivrak A, Ulaş B, Kivrak H. A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2. IntImmunopharmacol 2021; 90:107232. doi: 10.1016/j.intimp.2020.107232.

Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, et al. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13(1):81. doi: 10.3390/pharmaceutics13010081.

WHO: WHO recommends against the use of Remdesivir in COVID-19 patients. 2020. (Accessed April 13, 2022, at <https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients>).

Hepatotoxicity of Remdesivir for COVID-19: Systematic Review and Li Y, Cai H, Rajabalee N, Au X, Friedenberg F, Wallach S. S1027 Meta-Analysis. Official journal of the American College of Gastroenterology ACG 2020; 115:S523. doi: 10.14309/01.ajg.0000706156.26271.8a.

Ader F, Bouscambert-Duchamp M, Hites M, Peiffer-Smadja N, Poissy J, Belhadi D, et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19: a phase 3, randomized, controlled, open-label trial. Lancet Infect Dis 2022; 22(2):209–21. doi: 10.1016/S1473-3099(21)00485-0.

Dehelean CA, Lazureanu V, Coricovac D, Mioc M, Oancea R, Marcovici I, et al. SARS-CoV-2: Repurposed Drugs and Novel Therapeutic Approaches-Insights into Chemical Structure-Biological Activity and Toxicological Screening. J Clin Med 2020; 9(7):2084. doi: 10.3390/jcm9072084.

VEKLURY. Veklury Remdesivir 100 mg for injection. 2022. (Accessed April 15, 2022, at <https://www.vekluryhcp.com/>).

Sun D. Remdesivir for Treatment of COVID-19: Combination of Pulmonary and IV Administration May Offer Aditional Benefit. AAPS J 2020; 22(4):77. doi: 10.1208/s12248-020-00459-8.

Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci 2020; 6(5):672–83. doi: 10.1021/acscentsci.0c00489.

Ramaiah S, Rivera C, Arteel G. Early-phase alcoholic liver disease: an update on animal models, pathology, and pathogenesis. Int J Toxicol 2004; 23:217–31. doi: 10.1080/10915810490502069.

Mehendale HM. Tissue Repair: An Important Determinant of Final Outcome of Toxicant-Induced Injury. Toxicol Pathol 2005; 33(1):41–51. https://doi.org/10.1080/0192623059088180.

Paniagua, AC, Amariles P. Hepatotoxicity by Drugs. Pharmacokinetics and Adverse Effects of Drugs - Mechanisms and Risks Factors. Intech Open 2017. (Accessed September 18, 2022, at https://www.intechopen.com/chapters/57809 doi: 10.5772/intechopen.72005).

Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 2012; 1822(9):1387–96. doi: 10.1016/j.bbadis.2012.02.009.

Thomas C, Tampé R. Structural and Mechanistic Principles of ABC Transporters. Annu Rev Biochem 2020; 89(1):605–36. https://doi.org/10.1146/annurev-biochem-011520-105201.

Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 2005; 6:123–42. doi: 10.1146/annurev.genom.6.080604.162122.

Berger J, Albet S, Bentejac M, Netik A, Holzinger A, Roscher AA, et al. The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur J Biochem 1999; 265(2):719–27. doi:10.1046/j.1432-1327.1999.00772.

NCBI. C-X3-C motif chemokine ligand 1 [Homo sapiens (human)]. 2022. (Accessed on March 20, 2022, at <https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6376>).

Van Roermund CW, Ijlst L, Wagemans T, Wanders RJ, Waterham HR. A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta 2014; 1841(4):563–8. doi: 10.1016/j.bbalip.2013.12.001.

Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. doi: 10.3389/fcell.2020.613892.

Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2015; 24(2):361–70. doi: 10.1093/hmg/ddu448.

Tawbeh A, Gondcaille C, Trompier D, Savary S. Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22(11):6093. doi: 10.3390/ijms22116093.

Zhang Y, Zhang Y, Wang J, Yang J, Yang G. Abnormal expression of ABCD3 is an independent prognostic factor for colorectal cancer. Oncol Lett 2020; 19(5):3567–77. doi: 10.3892/ol.2020.11463.

Seborova K, Vaclavikova R, Soucek P, Elsnerova K, Bartakova A, Cernaj P, et al. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses. Cancer Med 2019; 8(2):606–16. doi: 10.1002/cam4.1964.

Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et. al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med 2020; 382(24):2327–36. doi: 10.1056/NEJMoa2007016.

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236):1569–78. doi: 10.1016/S0140-6736(20)31022-9.

Leegwater E, Strik A, Wilms EB, Bosma LBE, Burger DM, Ottens TH, et al. Drug-induced Liver Injury in a Patient With Coronavirus Disease 2019: Potential Interaction of Remdesivir With P-Glycoprotein Inhibitors. Clin Infect Dis 2021; 72(7):1256–8. doi: 10.1093/cid/ciaa883.

Wang D, Li Z, Liu Y. An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics. J Infect Public Health 2020; 13(10):1405–14. doi: 10.1016/j.jiph.2020.07.004.

Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna S, et al. Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol Med 2021; 13(1):e13426. doi: 10.15252/emmm.202013426.

Bjork JA, Wallace KB. Remdesivir; molecular and functional measures of mitochondrial safety. Toxicol Appl Pharmacol 2021; 433:115783. doi: 10.1016/j.taap.2021.115783.

Xu Y, Barauskas O, Kim C, Babusis D, Murakami E, Kornyeyev D, et al. Off-Target In Vitro Profiling Demonstrates that Remdesivir Is a Highly Selective Antiviral Agent. Antimicrob Agents Chemother 2021; 65(2):e02237–20. DOI: 10.1128/aac.02237-20.

Parang K, El-Sayed NS, Kazeminy AJ, Tiwari RK. Comparative Antiviral Activity of Remdesivir and Anti-HIV Nucleoside Analogs against Human Coronavirus 229E (HCoV-229E). Molecules 2020; 25(10):2343. doi: 10.3390/molecules25102343.

Yan K, Rawle DJ, Le TT, Suhrbier A. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives. Virol J 2021; 18(1):123. doi: 10.1186/s12985-021-01587-z.

You J, Hou S, Malik-Soni N, Xu Z, Kumar A, Rachubinski RA, et al. Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling. J Virol 2015; 89(24):12349–61. doi: 10.1128/JVI.01365-15.

Wong CP, Xu Z, Hou S, Limonta D, Kumar A, Power C, et al. Interplay between Zika Virus and Peroxisomes during Infection. Cells 2019; 8(7):725. doi: 10.3390/cells8070725.

Knoblach B, Ishida R, Hobman TC, Rachubinski RA. Peroxisomes exhibit compromised structure and matrix protein content in SARS-CoV-2-infected cells. Mol Biol Cell 2021; 32(14):1273–82. doi: 10.1091/mbc.E21-02-0074.

Zampino R, Mele F, Florio LL, Bertolino L, Andini R, Galdo M, et al. Liver injury in remdesivir-treated COVID-19 patients. HepatolInt 2020; 14(5):881–3. doi: 10.1007/s12072-020-10077-3.

Lippi G, Favaloro EJ. D-dimer is associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost 2020; 120(5):876–8. doi: 10.1055/s-0040-1709650.

Habibzadeh P, Stoneman EK. The Novel Coronavirus: A Bird's Eye View. Int J Occup Environ Med 2020; 11(2):65–71. doi: 10.15171/ijoem.2020.1921.

Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy 2020; 40(5):416–37. doi: 10.1002/phar.2398.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5):475–81. doi: 10.1016/S2213-2600(20)30079-5.

Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply. N Engl J Med 2020; 383(10):994. doi: 10.1056/NEJMc2022236.

Maldarelli GA, Savage M, Mazur S, Oxford-Horrey C, Salvatore M, Marks KM. Remdesivir Treatment for Severe COVID-19 in Third-Trimester Pregnancy: Case Report and Management Discussion. Open Forum Infect Dis 2020; 7(9):ofaa345. doi: 10.1093/ofid/ofaa345.

Sreekanth Reddy O, Lai WF. Tackling COVID-19 Using Remdesivir and Favipiravir as Therapeutic Options. Chembiochem 2021; 22(6):939–48. doi: 10.1002/cbic.202000595.

Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75(7):1730–41. doi: 10.1111/all.14238.

Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet GastroenterolHepatol 2020; 5(4):335–7. doi: 10.1016/S2468-1253(20)30048-0.

Dodig S, Čepelak I, ČepelakDodig D, Laškaj R. SARS-CoV-2 - a new challenge for laboratory medicine. Biochem Med (Zagreb) 2020; 30(3):030503. doi: 10.11613/BM.2020.030503.

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5):829–38. doi: 10.1016/j.kint.2020.03.005.

Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection.bioRxiv 2020. (Accessed on Febrauary 3rd, 2020, at https://doi.org/10.1101/2020.02.03.931766).

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368:m1091. doi: 10.1136/bmj.m1091.

Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020; 18(6):1421–4. doi: 10.1111/jth.14830.

Lee HJ, Son YJ. Factors Associated with In-Hospital Mortality after Continuous Renal Replacement Therapy for Critically Ill Patients: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2020; 17(23):8781. doi: 10.3390/ijerph17238781.

Li J, Zhou K, Duan H, Yue P, Zheng X, Liu L, et al. Value of D-dimer in predicting various clinical outcomes following community-acquired pneumonia: A network meta-analysis. PLoS One 2022; 17(2):e0263215. doi: 10.1371/journal.pone.0263215.

Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F, et al. The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study. Clin Transl Sci 2020; 13(6):1087–95. doi: 10.1111/cts.12880.

Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary Publication. J Thorac Imaging 2020; 35(4):219–27. doi: 10.1097/RTI.0000000000000524.

Léonard-Lorant I, Delabranche X, Séverac F, Helms J, Pauzet C, Collange O, et al. Acute Pulmonary Embolism in Patients with COVID-19 at CT Angiography and Relationship to d-Dimer Levels. Radiology 2020; 296(3):E189–91. doi: 10.1148/radiol.2020201561.

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4):844–7. doi: 10.1111/jth.14768.

Berri F, Rimmelzwaan GF, Hanss M, Albina E, Foucault-Grunenwald ML, Lê VB, et al. Plasminogen controls inflammation and pathogenesis of influenza virus infections via fibrinolysis. PLoS Pathog 2013; 9(3):e1003229. doi: 10.1371/journal.ppat.1003229.

Xiong M, Liang X, Wei YD. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Br J Haematol 2020; 189(6):1050–2. doi: 10.1111/bjh.16725.

Short SAP, Gupta S, Brenner SK, Hayek SS, Srivastava A, Shaefi S, et al. d-dimer and Death in Critically Ill Patients with Coronavirus Disease 2019. Crit Care Med 2021; 49(5):e500–11. doi: 10.1097/CCM.0000000000004917.

Fazal M. C-Reactive Protein a Promising Biomarker of COVID-19 Severity. Korean J Clin Lab Sci 2021; 53:201–7, doi:10.15324/kjcls.2021.53.3.201.

Stoeckle K, Witting B, Kapadia S, An A, Marks K. Elevated inflammatory markers are associated with poor outcomes in COVID-19 patients treated with remdesivir. J Med Virol 2022; 94(1):384–7. doi: 10.1002/jmv.27280.

Garibaldi BT, Wang K, Robinson ML, Zeger SL, Bandeen-Roche K, Wang MC, et al. Comparison of Time to Clinical Improvement With vs Without Remdesivir Treatment in Hospitalized Patients With COVID-19. JAMA Netw Open 2021; 4(3):e213071. doi: 10.1001/jamanetworkopen.2021.3071.

Liu BM, Martins TB, Peterson LK, Hill HR. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: A review. Cytokine 2021; 142:155478. doi: 10.1016/j.cyto.2021.155478.

Hachim IY, Hachim MY, Hannawi H, Naeem KB, Salah A, Hannawi S. The inflammatory biomarkers profile of hospitalized patients with COVID-19 and its association with patient's outcome: A single centered study. PLoS One 2021; 16(12):e0260537. doi: 10.1371/journal.pone.0260537.

Downloads

Published

2024-08-28

How to Cite

Yaba Saber, S. ., & A. Hassan, H. . (2024). Toxicity of antiviral Remdesivir on human liver’s ATP binding cassette subfamily D member 3 transporters . Zanco Journal of Medical Sciences (Zanco J Med Sci), 28(2), 248–266. https://doi.org/10.15218/zjms.2024.24

Issue

Section

Original Articles