Molecular detection of blaOXA-10(OXA-10) type Beta-lactamase encoding gene among extended spectrum Beta-lactamase isolates of Pseudomonas aeruginosa

Authors

  • Aryan R. Ganjo Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.
  • Isam Y. Mansoor Department of Medical Microbiology, College of Health Science, Hawler Medical University, Erbil, Iraq.

DOI:

https://doi.org/10.15218/zjms.2020.036

Keywords:

blaOXA-10, Beta-lactamase, Drug resistance, Erbil, Pseudomonas aeruginosa

Abstract

Background and objective: Pseudomonas aeruginosa is an opportunistic pathogen and inherently resistant to many antibiotics and can mutate to even more resistant strains during therapy. Resistance to the antibiotics in this group of bacteria increased due to the activity of β-lactamase genes and one of the most important groups of genes, blaOXA gene producing enzymes. The current study aimed to determine the prevalence of Ambler class D β-lactamases, including OXA-10 gene among P. aeruginosa isolated from patients in Erbil, Kurdistan.

Methods: Different clinical specimens were taken from patients with clinical symptoms of infection during one year. Identification was carried out on all isolates by Vitek2 system. Antibiotic susceptibility for antimicrobial agents was performed according to the clinical and laboratory standards institute (CLSI) guidelines. Production of Ambler class D β-lactamases was confirmed by polymerase chain reaction technique.

Results: A total of 100 isolates of P. aeruginosa, 57 isolates (57%) had shown resistance to six or more than six antibiotics, and 15 isolates showed resistance to one antibiotic. Also, none of the resistant isolates were showed complete resistance to all antibiotics. Out of 89 P. aeruginosa, 38.2% of isolates possessed the blaOXA-10 gene.

Conclusion: The results revealed the occurrence of extended-spectrum β- lactamases producing Pseudomonas aeruginous, and proper infection control practices are crucial to avert the spreading of ESBL-producing isolates in hospitals.

Metrics

Metrics Loading ...

References

Bonten MJ. Ventilator-associated pneumonia: preventing the inevitable. Clin Infect Dis 2011; 52(1):115–21.

Brusselaers N, Monstrey S, Snoeij T, Vandijck D, Lizy C, Hoste E, et al. Morbidity and mortality of bloodstream infections in patients with severe burn injury. Am J Crit Care 2010; 19(6):e81–7.

De Francesco M, Ravizzola G, Peroni L, Bonfanti C, Manca N. Prevalence of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in an Italian hospital. J Infect Public Health 2013; 6(3):179–85.

Mak JK, Kim M-J, Pham J, Tapsall J, White PA. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 2008; 63(1):47–54.

Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporins hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 2003; 52(4):629–35.

Kuo H-Y, Yang C-M, Lin M-F, Cheng W-L, Tien N, Liou M-L. Distribution of blaOXA-carrying imipenem-resistant Acinetobacter spp. in 3 hospitals in Taiwan. Diagn Microbiol Infect Dis 2010; 66(2):195–9.

Opazo A, Domínguez M, Bello H, Amyes SG, González-Rocha G. OXA-type carbapenemases in Acinetobacter baumannii in South America. J Infect Dev Ctries 2011; 6(04):311–6.

Naas T, Poirel L, Nordmann P. Minor extended‐spectrum β‐lactamases. Clin Microbiol Infect 2008; 14(s1):42–52.

merie Queenan A, Bush K. carbapenemases: the versatile B-lactamases. Clin Microbiol Rev 2007; 20(3):440–58.

Vandepitte J. Basic laboratory procedures in clinical bacteriology. WHO; 2003.

Carmeli Y, Lidji SK, Shabtai E, Navon-Venezia S, Schwaber MJ. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis 2011; 70(3):367–72.

Picao RC, Poirel L, Gales AC, Nordmann P. Diversity of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother 2009; 53(9):3908–13.

Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50(9):2990–5.

Golshani Z, Ahadi AM, SHarifzadeh A. Outbreak of ambler class A and D b-lactamase in multidrug-resistant Pseudomonas aeruginosa strains isolated from non burn patients. Afr J Microbiol Res 2013; 7(21):2646–50.

Mesaros N, Nordmann P, Plésiat P, Roussel‐Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13(6):560–78.

Tavajjohi Z, Moniri R, Khorshidi A. Detection and characterization of multi-drug resistance and extended-spectrum-beta-lactamase-producing (ESBLS) Pseudomonas aeruginosa isolates in teaching hospital. Afr J Microbiol Res 2011; 5(20):3223–8.

Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006; 32(3):343–7.

Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7(9):e16436.

Fazeli H, Sadighian H, Nasr-Esfahani B, Pourmand M. Identification of class-1 integron and various β-lactamase classes among clinical isolates of Pseudomonas aeruginosa at children's medical center hospital. J Med Microbiol 2015; 1(3-4):25–36.

Rahal JJ. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 2006; 43(Supplement2):S95–9.

Saleh R. Immunological and molecular Study on Pseudomonas aeruginosa isolated from clinical samples in Babylon Province. PhD thesis. Faculty of Medicine, Babylon University, Iraq; 2012.

Lee S, Park Y-J, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea.J Antimicrob Chemother 2005; 56(1):122–7.

Harada S, Ishii Y, Yamaguchi K. Extended-spectrum β-lactamases: implications for the clinical laboratory and therapy. Korean J Lab Med 2008; 28(6):401–12.

Adjei CB, Govinden U, Moodley K, Essack SY. Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa. S Afr J Infect Dis 2018; 33(2):38–41.

Downloads

Published

2020-08-30

How to Cite

Ganjo, A. R., & Mansoor, I. Y. (2020). Molecular detection of blaOXA-10(OXA-10) type Beta-lactamase encoding gene among extended spectrum Beta-lactamase isolates of Pseudomonas aeruginosa. Zanco Journal of Medical Sciences (Zanco J Med Sci), 24(2), 314–319. https://doi.org/10.15218/zjms.2020.036

Issue

Section

Original Articles