Prevalence of obesity in rheumatoid arthritis and its association with disease activity and latex positivity in a sample of patients in Erbil

Received: 30/3/2016 Accepted: 4/9/2016

Khadeeja Ramadhan Younis *

Dashty Abass Al-Bustany **

Abstract

Background and objective: The prevalence of obesity is rising across the world and it is regarded as a major health concern which is thought to be associated with a number of chronic illnesses including rheumatoid arthritis. This study aimed to find out the prevalence of obesity in patients with rheumatoid arthritis and to apprehend the association of obesity with disease activity and latex positivity.

Methods: One hundred twenty patients with rheumatoid arthritis who were regularly visiting Rizgary Teaching Hospital in Erbil were included in a cross-sectional study using specially designed mixed questionnaire. Body mass index and waist circumferences were measured, and their association with disease activity score 28 (DAS28) and clinical disease activity index (CDAI) were estimated. Furthermore, we evaluated their association with positive latex test.

Results: There was increased frequency of obesity in rheumatoid arthritis patients, and there was a positive association between body mass index and waist circumference with disease activity measured by DAS28 and CDAI (P < 0.001). There was no significant association between obesity and latex positivity which has been assessed separately for males and females (P = 0.898 and 0.086, respectively).

Conclusion: Obesity is frequently found in rheumatoid arthritis patients. It is associated with higher disease activity, but not with the latex positivity in these patients.

Keywords: Obesity; Rheumatoid arthritis; BMI; latex test; Disease activity.

Introduction

Rheumatoid **Arthritis** (RA) is an autoimmune systemic inflammatory disorder that affects synovial joints contributing to symmetrical polyarthritis of small and large joints.1 It occurs in women three to five times more than in men.2 Moreover, the frequency of disease in developed countries ranges from 0.5-1% of adults, in other words, 5 to 50 per 100,000 people developing the condition each year.³ Regarding pathophysiology of the disease, both genetic and environmental factors are implicated. Smoking is believed to be a major environmental risk factor contributing to RA.3. Furthermore, genetic factors comprise 50 % risk of developing RA in individuals.3 HLA-DR4 considered as an important genetic factor. However, it's

relevancy varies across different ethnic groups. 4,5 RA is linked with a reduction in life expectancy,6 mainly due to high risk of developing cardiovascular diseases (CVD) and worst outcomes in individuals affected with RA.7 Although the exact cause for the CVD in patients with RA is not well understood, but genetic liability.8-11 classical CVD risk factors 12,13 as well as the impact of systemic inflammation on the blood vessels 14,15 are all presumed to relate to cardiovascular consequences. 16 RA is also believed to be associated altered body composition. persistent inflammation signals metabolic dearrangements¹⁷ that cause degradation of lean tissue, particularly bulk of muscle 18 Moreover, the presence of sedentary lifestyle further reduces the muscle mass

^{*} Department of Rheumatology and Medical Rehabilitation, Rizgary Teaching Hospital, Erbil, Iraq.

^{**} Department of Internal Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq.

and lead to a buildup of more body fat with a stable or slightly increase in the body weight. 19 Adipose tissue is not merely an energy storage depot but is also act as an active endocrine/paracrine organ that secrets several bioactive molecules known as adipokines, 20 which is known to have various functions including regulation of energy intake and expenditure.21, 22 Similarly, many of them are involved in the regulation of the inflammatory process.²⁰ Generally, the more built up of adipose tissue is linked with increased in the production of pro-inflammatory molecules, likewise, decreased adiposity is related to a reduction in the level of pro-inflammatory as well as an increase in the concentration of anti-inflammatory molecules, thereby obesity is now presumed as a proinflammatory state. 16,23 The considerable association between obesity both with inflammation and cardiovascular disease, similarly, change in body composition seen in patients with RA heralds the study of obesity in patients with RA highly significant. Based on what is described regarding potential association between obesity and activation of pro-inflammatory pathways, one should conclude that obese RA patients have presumably a more severe and active disease. 16 To date, surprisingly very few studies explored the obesity in RA patients, the observation from general population triggers to a clear hypothesis that obesity has impact on RA patients and it influences the outcome and general health of patients. 16 This study was designed to find out the prevalence of obesity in patients with RA and to find out the association of obesity with disease activity and latex positivity in a sample of patients living in Erbil as no similar studies have been conducted before in Kurdistan region and up to my best knowledge in whole Iraq.

Methods

This cross-sectional study was carried out in the Rheumatology and Medical Rehabilitation Department of Rizgary

Teaching Hospital in Erbil City. A sample of 120 patients who fulfilled EULAR-ACR-2010 and ACR 1987 criteria for RA was selected by convenience method of sampling. Those patients who had Thyroid disease, Adrenal adenoma or carcinoma, malignancy, who were pregnant and those who were on certain drugs like Insulin, sulfonylurea, antidepressants, progesterone containing drugs were excluded. Data were collected and recorded on a specially designed questionnaire after getting verbal consent from the patients. Body weight and height and waist circumference (WC) were measured for each patient. Height was measured with a digital stadiometer, and weight was measured with subjects wearing light clothing and no shoes. Body mass index (BMI) was calculated as weight (kg) divided by height (m²), and patients were categorized thereafter according to BMI into normal weight <25 kg/m², overweight 25-<30 kg/m², obese ≥30 kg/ m². 19 Waist circumference was measured with a nonstretching tape measure that applies a consistent amount of tension to the tape at the midpoint between the lower border of the ribs and the iliac crest. Two measurements were taken, and the average measure was used and patients were divided into not at risk of comorbidity (WC < 80 cm for females and < 94 cm for males), increased risk of comorbidity (WC 80-<88 cm for females and 94- <102 cm for males) and substantially increased risk of comorbidity (WC ≥ 88 cm for females and ≥ 102 cm for males). The activity of disease was assessed by DAS28 and CDAI parameters (measures of disease activity in RA) which include 28 tender joint count, 28 swollen joint count and a patient global estimate of status in addition to acute-phase reactant (ESR or CRP level) in DAS28 and physician global estimate of status in CDAI. Based on DAS28 patients were graded as in remission ≤2.6, low active >2.6-3.2, moderate >3.2-5.1 and highly active >5.1 and for CDAI were entitled into in remission <2.8, low active 2.8-10,

moderate >10-22 and highly active >22.²⁴ Drug therapy was noted. Erythrocyte sedimentation rate and latex test were done for all patients. The data were managed by Excel using Chi-square and Fisher's exact test. A P value less than 0.05 was considered statistically significant.

Results

One hundred twenty patients with RA were

evaluated. Baseline and demographic data are shown in Table 1. 109 patients were female and 11 were male. Age of the patients ranged between 20 to 70 years, and none of them were smokers. In this study, 20% of patients had normal weight (BMI < 25), 33.33% were overweight (BMI 25-<30), and 46.66% were obese (BMI \geq 30). 62.5% of patients were latex positive (Table 1).

Table 1: Baseline and demographic data of patients.

		ВМІ						
Demographic data	Normal		Overweight		Obese			
• .	Number	%	Number	%	Number	%		
Age group/years	20-32	7	58.3	3	25	2	16.7	
	33-45	7	17.5	13	32.5	20	50	
	46-58	7	14.2	16	32.6	26	53.06	
	59-71	3	15.7	8	42.1	8	42.1	
Sex	Male	3	27.2	8	72.7	0	0.0	
	Female	21	19.2	32	29.3	56	51.3	
waist circumference	Normal	12	75	4	25	0	0.0	
	increased risk	12	60	4	20	4	20	
	substantially increased risk	0	0.0	32	38.09	52	61.9	
disease duration	< 2 years	7	35	6	30	7	35	
	2- 5 years	1	3.5	13	46.4	14	50	
	> 5 years	16	22.2	21	29.1	35	48.6	
type of treatment	Nil	6	50	2	16.6	4	33.3	
	DMARD	6	13.6	15	34.09	23	52.27	
	DMARD + prednisolone	6	15.7	18	47.3	14	36.8	
	Biology	1	20	1	20	3	60	
	DMARD + biology	5	23.8	4	19.04	12	57.1	
duration of morning	Nil	8	25.8	12	38.7	11	35.4	
stiffness	< 30 min	5	21.7	6	26.06	12	52.7	
	30 min to 1 hr	5	13.5	12	32.4	20	54.05	
	> 1 hr	6	20.6	10	34.4	13	44.8	
DAS28	Remission	4	100	0	0.0	0	0.0	
	Mild disease activity	13	92.8	1	7.14	0	0.0	
	Moderate disease activity	7	13.2	25	47.16	21	39.6	
	High disease activity	0	0.0	14	28.5	35	71.4	
CDAI	Remission	8	100	0	0.0	0	0.0	
	Low Disease Activity	15	55.5	11	40.7	1	3.7	
	Moderate Disease Activity	1	2.4	20	48.7	20	48.7	
	High Disease Activity	0	0.0	9	20.4	35	79.5	
Latex test	Positive	13	17.3	30	40	32	42.6	
	Negative	11	24.4	10	22.2	24	53.3	

All RA patients who were in remission by DAS28 and CDAI (who were only four patients measured by DAS28 and eight patients measured by CDAI) had a normal weight, and none of the normal weight patients had high disease activity. This is in comparison to 71.4% of patients who had

high disease activity by DAS28 and 79.5% of patients with high disease activity using CDAI were obese. Fisher's exact test revealed a significant association between obesity and both DAS28 and CDAI (P value <0.001). Table 2A and 2B show this information.

Table 2A: Association of BMI with DAS28.

			BMI			
		Normal	Overweight	Obese	Total	P value
DAS28	Remission	4	0	0	4	
	%	100%	0.0%	0.0%	100%	
	Mild disease activity	13	1	0	14	
	%	92.8%	7.14%	0.0%	100%	
	Moderate disease activity	7	25	21	53	
	%	13.2%	47.1%	39.6%	100%	<0.001
	High disease activity	0	14	35	49	
	%	0.0%	28.5%	71.4%	100%	
Total	Count	24	40	56	120	
	%	20%	33.3%	46.6%	100.0%	

Table 2B: Association of BMI with CDAI.

		ВМІ			Total	Devalue
		Normal	Overweight	Obese	Total	<i>P</i> value
CDAI	Remission	8	0	0	8	
	%	100%	0.0%	0.0%	100%	
	Low Disease Activity	15	11	1	27	
	%	55.5%	40.7%	3.7%	100%	
	Moderate disease activity	1	20	20	41	<0.001
	%	2.4%	48.7%	48.7%	100%	0.001
	High disease activity	0	9	35	44	
	%	0.0%	20.4%	79.5%	100%	
Total	Count	24	40	56	120	
	%	20%	33.3%	46.6%	100.0%	

Using waist circumference as an index for obesity and DAS28 as an index for disease activity 3.3% of patients were in remission of whom 50% had normal WC, in comparison to 0% of those who had WC that substantially increased the risks of comorbidities. On the other hand, 40.8% of patients had high disease activity. In this category, only 4.08% of patients had normal WC whereas 87.7% of patients had WC that increased substantially the risks of comorbidities. Thus, there was a significant

association between waist circumference and DAS28. Using CDAI as a parameter for disease activity 6.6% of all patients were in remission of whom 50% had normal waist circumference and 0% with a waist circumference that increased substantially the risk of comorbidities. 36.6% of all patients had high disease activity of whom 90.90% had a waist circumference that substantially increased the risks of comorbidities (*P* <0.001) as shown in Table 3A and 3B.

Table 3A: Association of waist circumference with DAS28.

		\				
		Normal	Increased risks	Substantially increased risks	Total	P value
DAS28	Remission	2	2	0	4	
	%	50%	50%	0.0%	100%	
	Mild disease activity	7	7	0	14	
	%	50%	50%	0.0%	100%	
	Moderate disease activity	5	7	41	53	<0.001
	%	9.4%	13.2%	77.3%	100%	0.001
	High disease activity	2	4	43	49	
	%	4.08%	8.16%	87.7%	100%	
Total	Count	16	20	84	120	
	%	13.3%	16.6%	70%	100%	

Table 3B: Association of waist circumference with CDAI.

		Waist circumference				
				Substantially increased risk	Total	P value
CDAI	Remission	4	4	0	8	
	%	50%	50%	0.0%	100%	
	Low Disease Activity	10	9	8	27	
	%	37.03%	33.33%	29.62%	100%	
	Moderate Disease Activity	2	3	36	41	<0.001
	%	4.87%	7.31%	87.8%	100%	
	High disease activity	0	4	40	44	
	%	0.0%	9.09%	90.9%	100%	
Total	Count	16	20	84	120	
	%	13.3%	16.6%	70%	100%	

Of all 120 patients, 75 were positive for latex test of whom 32 patients were obese, 30 patients were overweight, and 13 patients were normal in weight. Latex positivity was calculated for males and females separately. In males 66.7% of normally weighted patients had got a positive latex test versus 62.5% of all overweight patients. None of the male

patients were obese. These differences were not statistically significant (Table 4A). In females, 52.4% of all normally weighted patients resulted in a positive latex test if compared to 78.1% of overweight and 57.1% of obese female patients who had a positive latex test. There difference were not statistically significant (Table 4B).

Table 4A: Association of BMI with positive latex test in men.

			BMI	_		
		Normal	Overweight	Obese	Total	<i>P</i> value
latex test	Positive	2	5	0	7	
	%	63.6%	45.4%	0%	100%	
	Negative	1	3	0	4	
Total	%	25%	75%	0%	100%	0.898
	Count	3	8	0	11	
	%	27.2%	72.7%	0%	100.0%	

Table 4B: Association of BMI with positive latex test in women.

			ВМІ			5 .
		Normal	Overweight	Obese	Total	P value
latex test	Positive	11	25	32	68	
	%	16.1%	36.7%	47.05%	100%	
	Negative	10	7	24	41	
Total	%	24.3%	17.07%	58.5%	100%	0.086
	Count	21	32	56	109	
	%	19.2%	29.3%	51.3%	100.0%	

Discussion

Obesity has turned into a major global health concern^{25,26} and it is believed to be associated with a number of chronic illnesses.26 As described above, adipose tissue poses an immunodulating impact on RA, however, the exact mechanism remains increasingly unclear.²⁷ Hence we investigated retrospectively the occurrence of obesity in RA patients and its association with disease activity. Furthermore, we estimated for latex test in these patients. This study showed that a large proportion (79.99%) of RA patients were overweight (33.33%) and obese (46.66%), this is close to Crowson et al. study in which 40.3% of cases were revealed to be obese.²⁸ But this finding is slightly more than Giles study²⁹ (who reported that 33% of women and 36% of men with RA were obese by BMI and 57% by DEXA scan) and a UK study that reported the prevalence of obesity to be 31% using BMI.³⁰ This difference could be due to potential geographical factors, lifestyle and eating habits and lack of exercise. Our study also showed a positive association between obesity and disease activity indicating higher DAS28 and CDAI in heavier patients. This is in agreement with Vidal et al. study which reported that the disease activity score in 28 joints (DAS28) appeared to be higher in obese patients than in RA patients with normal weight.31 In QUESTA-RA study, 5161 patients with RA were compared with RA patients with normal-weight. The study concluded that obesity was associated with a rise in mean DAS28 (+0.23 points, 95% CI 0.11 to 0.34).32 Furthermore, 1596 obese patients with early RA were monitored for a mean 9.5±3.7 years, when compared with patients with normal weight, it turn out that obesity early and during follow up was strongly related to higher disease activity (mean DAS28 3.0±1.2 vs. 2.7 ± 1.3 , P = 0.002), less sustained remission rate (20.5% vs 26.6%; p=0.048) and increase in the mean pain level $(32.9\pm23.9 \text{ vs } 25.8\pm23.8; p=0.005).^{33,34}$ The rise in DAS28 observed in these studies

appeared to be subjectively influenced (number of sore joints as well as patients overall assessment³⁴⁻³⁶) and not linked to C reactive protein level or ESR.36,37 In two studies, Health Questionnaire Assessment (HAQ) was recruited to assess functional disability in RA patients. The score was significantly higher in obese patients than in normal weight patients (0.6±0.7 vs. 0.5±0.6; P < 0.001, and +0.16 (95% CI 0.03 to 0.30) respectively). 33-35 It is important to mention that despite higher disease activity in these patients, no significant association was observed between BMI and positive latex test which might be explained by small sample size. To the extent of our knowledge, to date, few studies have addressed the association of obesity with Rheumatoid factor (RF) or anti-cyclic citrullinated peptide (ACCP) in RA patients. Two case-control studies including 515 recent RA with 769 controls and 2748 RA with 3444 controls discovered a positive association between obesity and likelihood of developing RA negative for ACCP, with an increased risk of 3.45 (1.73 to 6.87) in the first study and 1.6 (1.2 to 2.2) in women in the second study. 33,38,39 Similarly, in two cohort studies performed by Lahiri et al. and Lu et al. large number of patients with RA were studied and monitored for a long term, they found that obesity is linked to high incidence of seronegative inflammatory polyarthritis (HR 2.75; 95% CI 1.39 to 5.46) and seronegative RA (HR 1.34; 95% CI 1.03 to 1.74)^{41,33} respectively. Furthermore, in the Lu et al. study, the risk for patients with obesity who develop RA with onset before 55 years was much more increased in all patients with RA (seropositive and seronegative) (HR 1.65; 95% CI 1.34 to 2.05). 41,33 This could be an explanation for reduced radiographic joint damage in obese RA patients as revealed in a study of 767 patients with early stage of RA demonstrated that more joint damage is observed in normal-weight patients at inclusion and significant radiographic progression during the study is noticed

than obese patients evaluated by the Ratingen score. 42 However, in RF- negative patients with RA. This difference in radiographic progression was not identified. Lately, in another study, 1068 participants were analyzed in two clinical trials testing Glimumab emphasized that obesity is potentially linked with a lower probability of increasing in van der Heijde-Sharp (vdHS) score at week 52 and 104, essentially independent of likely confounders. 33,43 These radiological results were proved in a study of MRI-evidenced progression in erosion score in two years' time. 43 On literature review, we came across very few studies addressing the factors contributing to obesity in RA. In a study performed in the UK, the comparison was done between the potential factors of lack of exercise, diet, and inflammation on BMI and body fat in patients with RA; obesity appeared to be associated with a lack of physical activity. However, an underweight state linked to low energy intake. Moreover, inflammation is believed to impact body composition in RA, apparently associated with either of them. 16, 44 It is believed that during the periods of high disease activity, persistent inflammation contribute to increasing in the muscle breakdown, this is further accelerated by low physical activity and decrease energy intake, similarly, during periods of reduced disease activity, muscle wasting is minimized, and less fat is stored if the patient keeps an eye on his diet and enhance his physical activity. If not, obesity may develop if exercise remains at low degree. 16 All in all, the above results highlight that high BMI is linked to a RA state known to have persistent pain and poor patient reported prognosis and presumably less responsive to treatment, while low BMI, on the other hand, is characterized by progressive joint damage.26 There were some weak points in our study; it was a retrospective cross-sectional study, and the sample size was relatively small. Furthermore, the selection of cases was through random sampling, and

certainly, there was selection bias. Also, BMI and WC will not precisely determine the amount of body fat. Thus more accurate measures are required. Although more investigations are required to know the exact mechanisms of how obesity causes RA, and vice versa, the clinical importance of these findings are that weight reduction and regular exercises are important to prevent RA especially in high risk groups. Furthermore, avoidance of obesity is important in RA patients for better control of the disease and sustained remission state and to reduce risks of cardiovascular diseases in these patients.

Conclusion

Increasing body weight is common among RA patients which is associated with higher DAS28 and CDAI. However, no significant association was noted with latex positivity in these patients. Further longitudinal studies are required to know the exact pathophysiology of RA in obese patients and more interventional studies are required to investigate the response of disease to different treatment groups in obese RA patients.

Conflicts of interest

The authors report no conflicts of interest.

References

- Harris ED. Clinical features of rheumatoid arthritis.
 In: Kelley's Textbook of Rheumatology. 7th ed. W.B. Saunders: Philadelphia, PA; 2005. PP. 1043–78.
- Shah A. Harrison's Principle of Internal Medicine. 18th ed. United States: McGraw Hill; 2012. P. 2738.
- 3. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010; 376 (9746): 1094–108.
- Doherty M, Lanyon P, Ralston SH. Musculosketal Disorders-Davidson's Principle of Internal Medicine. 20th ed. Edinburgh: Churchill Livingstone Elsevier; 2006. PP. 1100–6.
- Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B ,et al. TRAF1-C5 as a Risk Locus for Rheumatoid Arthritis — A Genomewide Study. N Engl J Med. 2007; 357 (12): 1199–209.
- 6. Erhardt CC, Mumford PA, Venables PJ, Maini RN, Factors predicting a poor life prognosis in rheumatoid arthritis: an eight year prospective study. Ann Rheum Dis 1989;48:7-13.

- 7. Kitas GD, Erb N. Tackling ischaemic heart disease in rheumatoid arthritis. Rheumatology 2003;42:607-13.
- Gonzalez-Gay MA, Gonzalez-Juanatey C, Lopez-Diaz MJ, Carlos GP, Jose AM. HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum2007; 57:125-32.
- Panoulas VF, Nikas SN, Smith JP, Douglas KM, Nightingale P, Millionis HJ. Lymphotoxin 252A>G polymorphism is common and associates with myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis 2008; 67:1550-6.
- Panoulas VF, Stavropoulos Kalinoglou A, Metsios GS, Giorgos SM. Association of interleukin-6 (IL-6)-174G/C gene polymorphism with cardiovascular disease in patients with rheumatoid arthritis: the role of obesity and smoking. Atherosclerosis 2009; 204:178-83.
- Mattey DL, Dawes PT, Nixon NB, Goh L, Banks MJ, Kitas GD. Increased levels of antibodies to cytokeratin 18 in patients with rheumatoid arthritis and ischaemic heart disease. Ann Rheum Dis 2004; 63:420-5.
- Panoulas VF, Douglas KM, Milionis HJ, Nightingale P, Stavropoulos-Kalinogou A. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology 2007; 46:1477-82.
- Toms TE, Panoulas VF, Douglas KM, Griffiths HR, Kitas GD. Lack of association between glucocorticoid use and presence of the metabolic syndrome in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther2008:10: R145.
- Stevens RJ, Douglas KM, Saratzis AN, Kitas GD. Inflammation and atherosclerosis in rheumatoid arthritis. Expert Rev Mol Med 2005; 7:1-24.
- 15. Gonzalez A, Kremers HM, Crowson CS, Ballman KV, Roger VL. Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis patients? Ann Rheum Dis 2008; 67:64-9.
- Stavropoulos-Kalinoglou A, Metsios GS, Koutedakis Y, Kitas GD. Obesity in rheumatoid arthritis, Rheumatology 2011;50:450–62.
- Metsios GS, Stavropoulos Kalinoglou A, Panoulas VF, Koutedakis Y. New resting energy expenditure prediction equations for patients with rheumatoid arthritis. Rheumatology 2008;47: 500-6.
- Roubenoff R, Roubenoff RA, Cannon JG, Josef JK. Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 1994; 93:2379-86.
- StavropoulosKalinoglou A, Metsios GS, Koutedakis Y, Nevill AM, Douglas KM, Jamurtas A, et al. Redefining overweight and obesity in

- rheumatoid arthritis patients. Ann Rheum Dis2007; 66:1316-21.
- Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 1998; 22:1145-58.
- Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a review. J Anim Sci 1998; 76:1405-20.
- 22. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003; 26:2442-50.
- 23. Ramos EJB, Xu Y, Romanova I, Irina R, Middleton F. Is obesity an inflammatory disease? Surgery 2003; 134:329-35.
- 24. Pincus T, Furer V, Keystone E, Yazici Y, Bergman MJ, Luijtens K. RAPID3 (Routine Assessment of Patient Index Data 3) severity categories and response criteria: Similar results to DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) in the RAPID 1 (Rheumatoid Arthritis Prevention of Structural Damage) clinical trial of certolizumab pegol, Arthritis Care and Research 2011; 63:1142-9.
- 25. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ,et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet2011;377:557–67.
- Axel Finckh, Carl Turesson. The impact of obesity on the development and progression of rheumatoid arthritis, Ann Rheum Dis 2014; 73 (11): 1911-3.
- 27. Klaasen R, Wijbrandts CA, Gerlag DM, Tak PP. Body Mass Index and Clinical Response to Infliximab in Rheumatoid Arthritis, Arthritis and Rheumatism 2011; 63(2): 359-64.
- 28. Crowson CS, Matteson EL, Davis JM, Gabriel SE. Contribution of obesity to the rise in incidence of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2013;65:71–7.
- Giles J, Ling S, Ferruci L, Bartlett S, Andersen R, Towns M, et al. Abnormal body composition phenotypes in older Rheumatoid Arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Care Res 2008; 59:807-15.
- Armstrong D, McCausland E, Quinn A, Wright G. Obesity and cardiovascular risk factors in rheumatoid arthritis. Rheumatology 2006; 45:782.
- 31. Vidal C, Barnetche T, Morel J, Combe B, Daïen C. Influence of body mass index on disease activity and radiographic joint damage in rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Rheumatol 2014;66 (11 Suppl):S167.
- 32. Jawaheer D, Olsen J, Lahiff M, Forsberg S, Lähteenmäki J, da Silveira IG, et al. Gender, body mass index and rheumatoid arthritis disease

- activity: results from the QUEST-RA Study. Clin Exp Rheumatol 2010;28:454-61.
- 33. Daïen CI, Sellam J. Obesity and inflammatory arthritis: impact on occurrence, disease characteristics and therapeutic response RMD open 2015. 1(1), e000012.
- 34. Ajeganova S, Andersson ML, Hafström I. BARFOT Study Group. Association of obesity with worse disease severity in rheumatoid arthritis as well as with comorbidities: a long-term followup from disease onset. Arthritis Care Res 2013;65:78 –87.
- 35. Baker JF, George M, Baker DG, Toedter G, Von Feldt JM, Leonard MB. Associations between body mass, radiographic joint damage, adipokines and risk factors for bone loss in rheumatoid arthritis. Rheumatol Oxf Engl 2011;50: 2100-7.
- 36. Heimans L, van den Broek M, le Cessie S, Siegerink B, Riyazi N, Han KH, et al. Association of high body mass index with decreased treatment response to combination therapy in recent-onset rheumatoid arthritis patients. Arthritis Care Res 2013;65:1235–42.
- 37. Van der Helm-van Mil AH, van der Kooij SM, Allaart CF, Toes RE, Huizinga TW. A high body mass index has a protective effect on the amount of joint destruction in small joints in early rheumatoid arthritis. Ann Rheum Dis 2008;67:769–74.
- 38. Pedersen M, Jacobsen S, Klarlund M, Pedersen B V, Wiik A, Wohlfahrt J, et al. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther 2006;8:R133.
- 39. Wesley A, Bengtsson C, Elkan AC, Klareskog L, Alfredsson L, Wedren S, et al. Association between body mass index and anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis: results from a population-based case-control study. Arthritis Care Res (Hoboken) 2013;65: 107–12.
- 40. Lahiri M, Luben RN, Morgan C, Bunn DK, Marshall T, Lunt M, et al. Using lifestyle factors to identify individuals at higher risk of inflammatory polyarthritis (results from the European Prospective Investigation of Cancer-Norfolk and the Norfolk Arthritis Register—the EPIC-2-NOAR Study). Ann Rheum Dis 2014;73:219–6.
- 41. Lu B, Hiraki L, Sparks JA, Malspeis S, Chen CY, Awosogba JA, et al. Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann Rheum Dis2014;73:1914–22.
- 42. Westhoff G, Rau R, Zink A. Radiographic joint damage in early rheumatoid arthritis is highly dependent on body mass index. Arthritis Rheum 2007;56:3575–82.

- 43. Baker JF, Ostergaard M, George M, Shults J, Emery P, Baker DG ,et al. Greater body mass independently predicts less radiographic progression on X-ray and MRI over 1–2years. Ann Rheum Dis2014;73:1923–8.
- 44. Stavropoulos-Kalinoglou A, Metsios GS, Smith JP, Panoulas VF, Douglas KMJ, Jamurtas AZ, et al. What predicts obesity in patients with rheumatoid arthritis? An investigation of the interactions between lifestyle and inflammation. Int J Obes 2010;34: 295–301.